61970-454 (IEC:2006
– 10 –

 Draft IEC 61970: Energy Management System Application Program Interface (EMS-API) –

Part 454: Naming Service Specification

Revision 0

2006-09-08

Table of Contents

51
Scope

2
Normative References
5
3
General Naming Service Use Case
6
3.1
Resource Naming
6
3.2
Example of the Problem
6
3.3
Use Cases
7
3.4
Example System Requirements
9
4
Naming Service Profiles
10
4.1
Information Model
10
Annex A Sample Profile Definition (Informative)
13
A.1
Using GDA to Access Cross Reference Information
13
A.1.1
Registry Access Points
13
A.2
Resource ID Service and Generic Data Access Interface Description
13
A.3
Access Point Examples
14
A.3.1
GDA Based Interface Examples
14

INTERNATIONAL ELECTROTECHNICAL COMMISSION

EMS-API –

Part 454: Naming Service Specification

FOREWORD

1)
The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2)
The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3)
The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.

4)
In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5)
The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61970 has been prepared by Working Group 13, of IEC technical committee 57 : Power system control and associated communications:

The text of this standard is based on the following documents:

	FDIS
	Report on voting

	57/XX/FDIS
	57/XX/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

INTRODUCTION

This standard is one of the IEC 61970 series that define an application program interface (API) for an energy management system (EMS).

The Part 3 series of documents in IEC 61970 specify a Common Information Model (CIM): a logical view of the physical aspects of EMS information. The Part 3 series includes Part 301: Common Information Model (CIM).

This standard is one of the IEC 61970 Part 4 series that define utility control center component interface specifications (CIS). Part 4 specifies the functional requirements for interfaces that a component (or application) shall implement to exchange information with other components (or applications) and/or to access publicly available data in a standard way. The component interfaces describe the specific message contents and services that can be used by applications for this purpose. The implementation of these messages in a particular technology is described in Part 5 of the standard.

Part 454 specifies and information model and services to access an business object naming registry. In this case, business objects are instances of classes defined in the CIM.
INTERNATIONAL ELECTROTECHNICAL COMMISSION

EMS-API –

Part 454: Naming Service Specification

1 Scope

This standard, IEC 61970-454, is a member of the Part 450 - 499 series that, taken as a whole, defines at an abstract level the content and exchange mechanisms used for data transmitted between control center components.

This specification discusses the use of multiple names
 (URI’s) for the same resource and the need for a cross-reference between the multiple names (URI’s). It also describes a Resource Name Repository (RNR) information model that enables the design of a resource name cross-reference and provides an example for how the 61970 standard interfaces can by used to address the issue. A resource is a named instance of a specific class or type, e.g. circuit breaker, transmission line, purchase order etc. The objectives for creating a resource name cross-reference include:

1. To support merging of overlapping models, e.g. merge an imported CIM XML file [1] with an existing model.

2. To provide a cross-reference between resource names from different data models.

3. To help assure consistency of data models as changes are made.

The immediate need for a cross-reference is for power system model exchange [1]. However, the naming cross reference system described in this document can help resolve names for any resources such as assets, work orders etc. between utilities and within a utility.

The approach described herein is based on vendor-neutral, open standards that can support many business processes. An important and commonly used information model that defines power system and utility specific resource types (classes) is the Common Information Model (CIM).
2 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 61970-1, EMSAPI – Part 1: Guidelines and General Requirements

IEC 61970-2, EMSAPI – Part 2: Glossary

IEC 61970-301, EMSAPI – Part 301: Common Information Model (CIM) Base

IEC 61970-302, EMSAPI – Part 302: Common Information Model (CIM) Financial, EnergyScheduling, and Reservation

IEC 61970-403, EMSAPI – Part 403: Generic Data Access
3 General Naming Service Use Case

3.1 Resource Naming

Resources in the real world may have representations in IT systems. Such resources from the real world can be physical assets as well as abstract descriptions of functions that the assets perform.

Typical assets from the power system domain are transformers, breakers, substations, etc. The corresponding functions are power transformation, breaking power, being a fenced yard for placement of equipment etc. Equipment assets usually have a manufacturing number (serial number) for identification while functions have a symbolic and human readable name, e.g.:

· A power transformer may be called T1 within a substation.

· A main breaker may be called Q0 within a bay.

· A main breaker function has a well-defined location within a power system network while a physical breaker with a certain serial number might be located in storage as well as at the main breaker function location.

Several naming schemes for resources exist. Some schemes rely on the fact that power system equipment is hierarchically organized, e.g. a substation contains one or more voltage levels, voltage levels contains bays and bays contains breakers. The IEC 61346 [2] standard describes hierarchical structuring and naming of functions as well as the relation to the physical assets with serial numbers. However, in existing IT systems numerous naming conventions exist. Hence, a cross-reference can't rely on any specific naming standard. Resources are usually represented in many IT systems where each system has its own system unique names. The naming conventions typically differ between systems hence there is no way to tell from the resource names if resources are the same or different. The judgment of whether resource names refer to the same resource instance requires a manual step where a human examines the resource name and possibly also associated property values, e.g. size, color, location, etc. Often the resource name itself can give some hints.

Different IT systems within an organization may have databases with their own names for the same resource as well. As separate IT systems usually serve different purposes they have different scopes, e.g. systems for engineering, planning, operation (SCADA/EMS) etc.

3.2 Example of the Problem

It is important to judge if resources are the same or not when data is exchanged between IT systems, e.g.:

· IT systems in different utilities have independently created multiple references to the same resources and there is a need to understand their correlation. This is the case for the CIM XML model exchange [1] between ISO/RTOs.

· IT systems within the same utility are being integrated. This is the case when integrating IT systems for planning, designing, engineering and operating new equipment, e.g. a transmission line.

Some utilities have begun to solve the naming cross-reference by their own means. For example, when building their State Estimator (SE) models for Security Coordination, utilities model resources external to their region. The external portions of these models are often based on a planning model that has been manually embellished and linked to measurement points. Once detailed models from neighboring utilities are available, e.g. as CIM XML model files [1], utilities will work on merging the models. There will then be a need to cross-reference the company’s existing resource names with each neighboring utility.

Consider for example, a substation name, such as “Airport Substation,” which may be referenced by the same name in several companies. When Company A is exchanging information about substations with Company B, substations must be uniquely identified while maintaining the ownership and other information about the substations. In addition, it is important that the receiving organization of the information be able to identify whether the substations with the same name are physically different or if two substations with different names are, in effect, the same.

An important technique in managing a resource name cross-references is the creation of a registry that can be accessed by all organizations as required. A registry containing all names associated with a resource makes it easy to keep track of the names and organizations that created the names as well as the organization responsible for the cross-reference entry. The organization responsible for creation and maintenance of a cross-reference entry is called the Registration Authority.

The Registry provides a point of reference for all resource names and associated property values. The registry assigns each cross-reference a Master Resource ID (MRID). The MRID provides a unique globally unambiguous ID and does not need to be human readable (the MRID is suggested to be a Globally Unique IDentifier, a GUID, that is a machine generated 128 bit number).

For example, after requesting a new cross-reference for a substation, the registration authority enters the substation names used by the organizations as well as their associated property values. Substation property values may include the highest voltage level contained in the substation, as well as its geographic location (latitude/longitude) and address if it exists.
3.3 Use Cases

Initially a naming repository is empty. Hence before it can be used it must be populated with cross-references. There are two cases for how this can be done

· An organization decides to enter it’s names in the repository on it’s own.

· Two organizations already have an existing cross-reference between resource names and want to enter it.

In the first case, the organization may be sure there are no other names in the repository representing the same resource that it is going to enter. If so, cross-references with just one resource name each is entered. If there is any doubt about a resource already being in the repository it must searched for matching cross-references. Depending on how much information is known about the already existing cross-references there are several search strategies that can be used. It is assumed that the key of the cross-reference itself, the MRID, is unknown at this stage, hence the cross-reference cannot be directly accessed. Search strategies can then use:

· Organization name: The organization that entered the cross-reference is known and is used to sort out the cross-reference entered by that organization.

· Resource naming conventions: The naming convention for the names in the registry is known and it is possible to map these to local names. Hence, the full names or parts of the names in the registry can be correlated using local names.

· Resource properties: e.g. size, color, location, rating, voltage etc. Use the locally recorded properties to search resources that have matching properties.

· The scope of the name: e.g. engineering functional name, EMS-SE name, etc. The scope is then used to sort out names with matching scope.

In order to achieve these search strategies, the repository should support searching by taking search criteria as input and use it to perform the search. The above listed search strategies will then need a service that can do the following queries:

· Return all cross-references that have resource names entered by a specified organization.

· Return all cross-references with a resource name that is found in a given list of names. The names in the list may contain wild cards.

· Return all cross-references with properties matching properties in a given list.

· Return all cross-references that have names that match a given scope.

· To further reduce the number of matching cross-references it should be possible to combine the queries above, e.g. provide organization, scope and properties in one query. Once the searching is done the repository is updated as follows:

· Names that do not have a matching cross-reference in the repository are added to a new cross-reference. Organization specific properties might be added as well.

· The names that have a matching cross-reference in the repository are added to the existing cross-reference. Organization specific properties might be added as well.

· When two organizations that have an existing cross-reference between their names and want to add it to the repository they must also consider the case that corresponding resources they don’t know about already exist in the repository. They may have to search the repository in the same way as when a single organization just enters it’s own names. Once the searching is done the repository is updated as follows:

· A pair of names that does not have a matching cross-reference in the repository is added to a new cross-reference. Organization specific properties might be added as well for each name.

· A pair of names that have a matching cross-reference in the repository is added to the existing cross-reference. Organization specific properties might be added as well for each name.

Once a repository has been populated with cross-references, it can be used to support data exchange. The simplest method is to use the cross-reference key, the MRID, to identify resources in the data exchange as it is unambiguous and allows for direct look up in the registry. However, it is also possible to use the resource names used within an organization. One of the organizations must then use the repository to find the names used by the other organization using the organization name, resource name and possibly other qualifications as the scope to find the cross-reference. Once the cross-reference is found, the corresponding MRID or other organizations resource name can be easily fetched from the cross-reference.

3.4 Example System Requirements

A list of requirements for the registry includes:

1. Provide a cross-reference between organization specific resource names for the same resource.

2. The registry shall be capable of being consistently applied to all instances of any type, e.g. Substation, PowerTransformer, Measurement or any other CIM type.

3. The registry shall provide the ability to unambiguously identify any instance of a single resource.

4. Each IT system shall be allowed to keep its local naming conventions and resource identification without change.

5. The registry shall support name cross-referencing of resources even when local resource names are not globally unique. However the resource name is required to be locally unique within the scope and organization.

6. A set of local names that has been identified to represent the same resource is given a unique persistent identifier called a Master Resource ID (MRID). Each cross-reference entry is associated with one and only one MRID. Each MRID is associated with one and only one cross-reference entry.

7. Provide a facility to associate property values with each resource name.

8. It is required that the users of a registry agree on the schema defining the resource types. It is suggested that a normalized or de-normalized subset of the CIM is used as schema.

9. The registry shall support use of property values to identify a specific resource.

10. The saved information shall be available in a machine-readable registry.

11. The registry shall be distributable to multiple sites to avoid one single point of failure.

12. It shall be possible to make several distributed registries to appear like one single registry.

13. As different geographical regions will have separate real world resources, many disjoint registries shall be possible.

14. The registry shall maintain its MRID’s if it is incorporated into a larger system.

15. The registry shall allow a local name change without affecting the MRID.

16. The registry shall support query capabilities as discussed in the use-case (Section 3.3) to produce resource lists for review and selection.

17. Allow the modification of a resource’s property values.

18. Provide user security levels to prevent modification of the local resource names and property values by non-authorized NameOwners.

19. Optionally provide a facility to notify all “owners” of resource names in the event of a change or deletion of an associated resource name or property values.

20. Provide programmatic and batch oriented interfaces that conform to industry standards.

4 Naming Service Profiles

4.1 Information Model

An example information model is provided to show how data in the GDA Extended Resource Identification Service and GDA Query Service can be used to access cross-reference information. It is not intended to be an implementation model and it is expected that an implementation will require a more elaborate model. The UML model for this is shown in Figure D.1.

[image: image1.emf]
Figure D.1

In the description below, classes, attributes and references present in Figure D.1 are shown in italics.

The ServerTable variable defines an array of server URIs. Each URI represents a globally unique logical name for a server. Each registry server instance has a single URI that is used in the server tables of other registry servers.

A ResourceNameRepository (RNR) is used by a number of NameOwners that have agreed to create a mapping between their LocalNames. A NameOwner is a member of a ResourceNameRepository. A NameOwner can be an organization or some other arbitrary entity assigned as owner of names. Multiple LocalNames are tied together using a CrossReference as a key. Each LocalName must belong to a single NameOwner. A LocalName is only allowed to be part of one CrossReference within one ResourceNameRepository but may appear in many different ResourceNameRepositories. LocalName and CrossReference are specializations of ManagedObject. A ResourceNameRepository maintains creation/modification information for all ManagedObjects.

A NameOwner is associated with one or more ERP_Contacts. Each ERP_Contact is associated with an ERP_Address. ERP_Contact contains a NameOwner’s contact person name and ERP_Address contains the contact person’s address.
A ModelingAuthority is a subtype of a NameOwner that is responsible for the initial creation of a CrossReference. A ModelingAuthority is a NameOwner, hence a ModelingAuthority may also be an Owner of LocalNames. A NameOwner that is not a ModelingAuthority is not allowed to create CrossReferences. Several NameOwners may also be a ModelingAuthority and at least one NameOwner must be a ModelingAuthority so that CrossReferences can be created.

A Class describes a type of real world object (e.g. PowerTransformer, Substation, Measurement etc.) that is represented by a CrossReference. A Class belongs to a Schema, e.g. the CIM or any other schema. A Class has Properties. The Properties define what PropertyValues may appear in the registry. PropertyValues describe a ManagedObject (e.g. location, rating, etc.). PropertyValues not defined by any Property are not allowed.
A CrossReference is a ManagedObject. Once a CrossReference has been created and the required PropertyValues are set by the ModelingAuthority , the resource is sufficiently described for other NameOwners to discover what real world objects the CrossReference refers to. Required PropertyValues can only be filled in by the ModelingAuthority . Other NameOwners may add non-required PropertyValues provided that their definition exists as a Property in the Schema defined for CrossReference’s Class. A non-required Property contains additional information about a ManagedObject, (e.g. weight, size, color, length, etc.).

An MRID is a globally unique number, e.g. a so-called Globally Unique IDentifier (GUID). A GUID is a persistent 128-bit number that is generated by a specific algorithm. Programs that generate GUIDs are an integrated part of all major operating systems.

A ResourceNameRepositoryHost provides an Accesspoint that can be used by clients to actually retrieve or enter data from/into a ResourceNameRepository.

Annex A Sample Profile Definition (Informative)

A.1 Using GDA to Access Cross Reference Information

This rest of this annex describes a design for resource naming cross-reference access mechanisms. These mechanisms depend on globally unambiguous ID’s for resources defined within the EPRI Common Information Model (CIM). The naming cross-reference access mechanisms described below relies on the concept of GUID’s and data access via two IEC 61970 standard interfaces called the Resource ID Service and Generic Data Access (GDA).

The approach described herein is based on vendor-neutral, open standards that can support the many business processes that are being built upon the base of the Common Information Model (CIM).

A.1.1 Registry Access Points

Access Points can provide two mechanisms for data access. For programmatic data access, an Access Point exposes a Resource ID Service and GDA interface. For batch oriented data access an Access Point may import and export using CIM XML.

A.2 Resource ID Service and Generic Data Access Interface Description

The Resource ID Service specified in 61970 Part 402 includes methods that allow a client to create resource ID’s (GUID’s) for metadata and instance data related objects. For example, at the metadata level, using create_resource_ids, a client can create a Class ID (GUID) associated with a new class, such as a new type of breaker as well as Property ID’s (GUID’s) for properties associated with that new breaker class.

At the instance data level, using create_resource_ids, a client can create a resource ID (GUID) for specific instance of that new breaker. The Resource ID Service also allows a client to associate one or more local names with a resource using the method set_uris. Local names correspond to URI’s – that is a string that identifies a resource. An example URI might be: “NorthLoadArea/AirportSubstation/BreakerQ1”.

The Resource ID Service provides methods to go from URI’s to ID’s (GUID’s) and back again all within the context of what is called a View Name. The two functions that do this are get_uris and get_resource_ids. The method get_uris takes a resource ID and a View Name as input and returns a URI. The method get_resource_ids takes one or more URI’s as input and returns the corresponding Resource ID’s. The view name is the name of the NameOwner (a specific application or an organization). For example, a SCADA system may name measurements using a path based naming scheme derived from a power system equipment hierarchy. The View Name in this case would be the name of the SCADA component and the local name would be the path to the measurement within the SCADA system’s hierarchical view. In the case of exchanging power system models between utilities, the View Name would correspond to the name of the utility while the local name would correspond to the name that the utility used to refer to a resource.

If Utility A wanted to discover the local name of a breaker used by Utility B, Utility A would first use get_resource_ids to map from its local name to the MRID. The parameters passed to get_resource_ids would include Utility A’s local name of the breaker as well as “Utility A’ as the View Name. Utility A would then use the MRID as input to get_uris to obtain the local name used by Utility B. In this case, “Utility B’ would be used as the View Name passed into get_uris.

The Generic Data Access Service builds upon the Resource ID Service by allowing clients to get and set property values associated with a resource. Additionally, GDA provides the ability to search for resources given the value of properties.

GDA provides access to property values via Resource ID (GUID). In the case of the Registry, the Resource ID used is the MRID. To set the value of properties associated with an MRID, a client uses the apply_updates method. This method takes a Resource Description as input. A Resource Description contains a Resource ID as well as one or more Property ID’s and Property Values. The method apply_updates can be used to set the values of properties of multiple associated objects.

A.3 Access Point Examples

A.3.1 GDA Based Interface Examples

The interfaces described in 61970 Part 402 Resource ID Service and Part 403 Generic Data Access can be used to add, modify, delete and search for entries in the RNR. This section provides examples of Resource ID Service and Generic Data Access interface use.

A.3.1.1 Query for ID’s for all Standard and “Built In” Types

In order to create instances of the built in types, you first need to retrieve their Class ID’s. The standard and “built in” types include:

· rdf:Property

· rdfs:Class

· rdfs:Label

· Schema

· PropertyValue

· CrossReference

· ModelingAuthority
· LocalName

· NameOwner

· ERP_Contact

· ERP_Address

Pass the names for the built-in types to the get_resource_ids service to retrieve the Class ID’s for the types:

ExtendedResourceIDService:: get_resource_ids(URI’sForBuiltInTypes)

A.3.1.2 Create a ModelingAuthority

Create a single Resource ID for a given class of resource - in this case a ModelingAuthority . The first parameter specifies the type of resource to create and the second parameter specifies how many to create. The new resource ID is returned by the following call:

ExtendedResourceIDService::create_resource_ids(ModelingAuthority ClassID, 1)

Then set the name property to the name of the ModelingAuthority . The parameter to apply_updates is a resource description that includes the Resource ID for the new ModelingAuthority previously returned as well as the Property ID for the NameOwner’s Name property and the value of the Name property. The name of the ModelingAuthority could be set to “UtilityA” by the following call:

GDA::apply_updates(UtilityA’sResourceDescription)

A.3.1.3 Create CrossReference Entry

In order to create instances of a class, you first need to retrieve their Class ID’s. The names of the classes are defined in a schema. To get the Class ID for a breaker pass in the URI for class breaker. For example:

ExtendedResourceIDService:: get_resource_ids(“www.utilityRegistry.com\version10\#breaker”)

Use create_resource_ids to create a single new MRID for a given class of resource - in this example a breaker. The first parameter specifies the type of resource to create and the second parameter specifies how many to create. The new resource ID is returned by the following call:

ExtendedResourceIDService::create_resource_ids(BreakerClassID, 1)

A ModelingAuthority is uniquely empowered to create CrossReferenceEntry as well as set their required properties. The ModelingAuthority sets the initial LocalName for a CrossReference entry by using the ModelingAuthority ’s Name as the first parameter (ViewName) to the set_uris method. The other parameters to set_uris are the Resource ID previously returned for the Breaker as well as the URI (LocalName) used by the ModelingAuthority for that breaker. UtilityA’s name for the breaker could be set to “Q1” by the following call:

ExtendedResourceIDService:: set_uris(“UtilityA”, Q1ResourceID, UtilityA’sNameForQ1)

A.3.1.4 Query for Property ID’s And Set Property Values

After setting the breaker’s local name, the ModelingAuthority can set the values of other properties. The parameter to apply_updates is a resource description that includes the Property ID’s for the desired Properties to be set as well as the value of the properties. To retrieve the ID for the properties of the breaker class, pass in the Class ID for a breaker:

GDA:get_related_values(BreakerClassID, RDFS:Domain

The voltage rating of for Breaker Q1 could be set by the following call:

GDA::apply_updates(Q1’sResourceDescription)

A.3.1.5 Query for all Breakers and Their Property Values

After the ModelingAuthority has created a CrossReferenceEntry, a non-ModelingAuthority NameOwner say “UtilityB”, can search the ResourceNameRepository for Q1 if UtilityB knows the values of the required properties for Q1. The NameOwner can search for all breakers and their properties values using a GDA Resource Query Service get_extent_values operation. To find all instances of the breaker class and their properties, pass in the Class ID for the breaker class and a list of the property ID’s desired:

GDA:: get_extent_values (BreakerClassID, BreakerPropertyIDList)

A.3.1.6 Create Additional Local Names

After finding Q1, UtilityB can add more Local Names (URI’s) associated with Q1. They do so by using their Name “UtilityB” as the first parameter (ViewName) to the set_uris method. The other parameters to set_uris are the common Cross Reference Resource ID for Q1 as well as the URI (LocalName) that they use.

ExtendedResourceIDService:: set_uris(NameOwnerName, ResourceID, UtilityB’sNameForQ1)

Name:string

(from ERP_Support)

ERP Address

required : boolean

(from ERP_Support)

LastModified :DateTime

0..*

1..*

1..*

ERP Contact

1

+Owner

1

1

+Member

0..*

+Members

1

0..*

NameOwner

1..*

0..*

0..*

description : String

name : String

ID : PropertyID

Property

0..*

1

0..*

1

0..*

1

0..*

1

ID : ClassID

description : String

name : String

Classs

1

0..*

1

0..*

1..*

1..*

0..*

1

+Creator

0..*

1

1

0..*

1

0..*

MRID : ResourceID

CrossReference

1..*

1..*

1..*

1..*

name

ResourceNameRepository

1

0..*

1

0..*

created :DateTime

Managed Object

value : SimpleValue

property : PropertyID

PropertyValue

ModelingAuthority

ResourceNameRepositoryHost

description : String

name : String

Schema

0..*

+Owns

0..*

0..*

0..*

name : String

LocalName

+PropertyValues

Accesspoint

� In the 61970 4xx series of standards, fully qualified names of instances are encapsulated in a URI e.g. “UtlityA.com//production//BreakerQ1”. Non-fully qualified names are often stored in the name property of an object (for those that inherit from the base CIM class Naming). The design in this annex requires fully qualified names to be used in the Resource Naming Repository. However, for the sake of clarity, this annex uses the term “name” instead of URI.

[image: image2.emf][image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf][image: image7.emf][image: image8.emf]